(二)平面与直线
9 U: D0 ]5 l! ^( `. } 1、知识范围
- I, o6 s* z: \/ z% R4 q6 P (1)常见的平面方程,点法式方程、一般式方程3 E& ^7 C. C4 Q" ]
(2)两平面的位置关系(平行、垂直和斜交)4 w- v0 g7 E9 v& o; ^1 X+ j2 J
(3)点到平面的距离
& [4 E9 }9 r0 O- e+ Q1 o+ Z7 _ (4)空间直线方程9 y. ^, l$ v0 I
标准式方程(又称对称式方程或点向式方程、一般式方程参数式方程
" A) B. x; R, K (5)两直线的位置关系(平行、垂直)
8 ` b: E8 T* _ (6)直线与平面的位置关系(平行、垂直和直线在平面上) I* ?7 k+ J/ V1 X. e6 ^
2、要求
: a/ r; R7 n) q3 h4 ~! N8 p" r (1)会求平面的点法式方程、一般式方程。会判定两平面的垂直、平行。会求两平面间的夹角。
' O: E# ^4 i W! R0 Y$ \ (2)会求点到平面的距离。9 U1 B* s7 B. m# I) z3 M
(3)了解直线的一般式方程,会求直线的标准式方程、参数式方程。会判定两直线平行、垂直。
" b7 V, L7 Q: j( Y (4)会判定直线与平面间的关系(垂直、平行、直线在平面上)。0 S. F. K2 ^" i
(三)简单的二次曲面
: c8 |2 l7 k+ S( i6 g4 E2 G 1、知识范围
: b2 p4 e0 |# c3 D3 T; w t9 N3 N 球面、母线平行于坐标轴的柱面 旋转抛物面圆锥面、椭球面7 q' M2 H7 D3 d3 K7 w+ h- F. d0 r7 r
2、要求
" q& w9 j& h% V/ s! ~4 _% y) |% ^4 J 了解球面、母线平行于坐标轴的柱面、旋转抛物面、圆锥面和椭球面的方程及其图形。' b, B* V- M9 o" x# K
多元函数微积分学
( |4 V g; c8 ?5 |+ i1 h (一)多元函数微分学) A0 e( s9 C4 r7 |' @! ? p
1、知识范围
+ v3 ^, `% @, Z$ n9 T5 L2 i. h% t (1)多元函数9 I, w3 t) }) A N- {, d
多元函数的定义、二元函数的几何意义、二元函数极限与连续的概念
1 Y1 |' V/ h( E, c (2)偏导数与全微分
* ~1 Y2 G1 j) Q; I 偏导数、全微分、二阶偏导数: W, X) C& G8 ?; E( W3 B
(3)复合函数的偏导数) a( W/ f) e/ O* m
(4)隐函数的偏导数
* j1 m; n$ d1 _0 n (5)二元函数的无条件极值与条件极值 |