复数形式特例
2 B$ j- m& R- e' v 这部分主要考察学生对特殊复数形式的记忆,作为考题并不过多的出现,但是在题干中的出现率却非常高,因此熟悉下列一些词的复数形式有助于理解题意
+ J B+ C$ Y( U) F" v/ P+ l 1.单复数词形相同 : F Q3 K, y8 k
如: people, fish, Chinese(某国人), aircraft, means, series, species,sheep, deer, aircraft等
2 f4 u" H, {3 J* I' H$ h 2.外来词保留了原来的复数形式, 这一点需要重点掌握, 如:
: F. N- v4 r @$ ^- s basis-bases analysis-analyses crisis-crises & u% n& I; e# r5 K# B" k3 K, Y3 W
medium(媒体)-media datum(数据)-data curriculum(课程)-curricula
5 J0 ]9 V3 t! }/ W larva(幼虫)-larvae criterion(标准)-criteria phenomenon(现象)-phenomena + I' {6 L+ ]3 [/ g V( z# `
3.通常只以复数形式出现的词语, 如: . o# V/ Y* ~$ i$ s, B
clothes trousers compasses(圆规) scales(天平) savings(储蓄),
, O( M- C6 w7 `" k$ i6 G statistics(统计数据), headquarters(总部),
8 E* u4 k$ w# Z3 Q: T 4.复数形式有特殊意义的词语, 如:
5 n$ e1 h$ P) }! p5 F0 T goods(货物), manners(礼貌), troops(军队), authorities(当局) % p; u# L: N2 N
5.不规则的名词复数
0 a b( |& p/ f5 z) n, i child - children mouse - mice louse - lice
& X4 J) x, F, A& H' U# L2 r tooth - teeth foot - feet
, Q3 U6 n p* R* B: n 6.注意:有一些结尾是-s的词, 但是要当作单数看待, 如: physics, politics, mathematics是表示学科的不可数名词
/ [0 K6 c& o; N7 p' T# @ 例题:
" m4 W" ]2 T! J5 b; r0 A( E6 _4 j8 x- ^ (1) With the incorporation of jazz history into current academic curricula, leading jazz musicians are now founding on the faculties of several universities.! q' E' B0 @# e' g* @/ ]0 o
(2) Like some other running birds, the sanderling lacks a back toe and has a three-toed feet.
{7 ?8 b- m9 n- [( s) r' C4 E 应改为:foot / M* W* v' p4 k- U3 W& t* b! A, r
解释:feet是foot的复数形式, 不定冠词a 之后应接可数名词的单数, 故将feet 改为单数 7 p1 e* g/ C: L* a5 e! Y- ?
词汇:sanderling: 三趾滨鹬 |